The certainty about measurement uncertainty during the assessment of harmonic emission

Johan.Rens@ieee.org vbissett@erongored.com.na

We cannot measure harmonic emission

- We can estimate harmpnic emissible we cannot measure harmenic emission
- Assessment of harmonic emission or beith generaling an costimation, quantum is unknown.
- An electrical utility interconnects sources of waveform distortion
- These sources are located all over.
- Distribution networks host many types of distorting sources, with renewable generation potentially, a significant role-player
- A solid-state interface to inject, or to absorb, electrical energy.
- Non-linear principle of operation
- Ability to exchange harmonic active power between non-linear sources

Considerations on harmonic emission

The IEC 61000-3-6 on harmonic emission

Containing the pollution: limits on emission

- Limits on the injection of harmonic currents a contract between the user of the network and the owner of the network
- Owner calculates "how much" harmonic currents can be tolerated at a PCC
- Process of apportioning- fundamental network principles Ohm's law
 - Resistance is futile... unless you're an electrical circuit!
- IEC and other standards set guidelines to be used in a contract
- How do you know that the user respect the contracted agreement?
- By the assessment of harmonic emission: ESTIMATION of what a single source contributes cannot be MEASURED.

We can only remain uncertain

- Because we can only estimate, not measure har
- Current emission is the "cause" to voltage emis
 - Sherlock Ohms is neede
 - "It is
- Instruments are needed to measure current
- Digital data, to be analysed digitally
- From the real world to the measurand in Exc
- Have not included the performance of the CT
- All components in the measurement chain contribute
- Let's focus on the low-hanging fruit

Low Hanging Fruit

Influence of burden or error (PF 1.0 & PF 0.8) – 200/1, 22 kV

Considerations on the metrology

- Up to 132 kV, magnetic VT's capacitive VT's poorer f-response
- Measurement Class CT and VT, Class 0.2 is common for instrumentation
- 0.2% Error at rated conditions (50 Hz, 5% 120%) IEC 61869-2
- 1 A rated secondary circuits increasingly exists.
- Instruments needs to produce useful data (certified, accurate and and)
- IEC 61000-4-30 Class A Edition 4 on current forensic quality data.
- The real world has to be translated into the digital world
- Analog to Digital conversion, subjected to measurement rules 200 ms, filters
 - signal processing rules and and to generate measurand visible in Excel

Resolution of measurement (1)

- Certified PQ instrument designed for 6 A (rms) secondary CT measurement
- 600:1 A CT
- 16-bit converter measuring 6 A rms

$$Resolution = 3 \times \left(\frac{8.49}{2^{15}}\right)$$

- = 2.3 mA into instrument
- = 0.47 A in primary circuit (0.0023 x 600)

Resolution of measurement (2)

Harmonic currents - 100 MW PV farm

95th Percentile current harmonics

Harmonic emission limits: measurement resolution

h	$I_{h(limit)}$	$I_{h(95\%)}$	$V_{h(\mathit{limit})}$	$V_{h(95\%)}$	h	$I_{h(limit)}$	$I_{h(95\%)}$	$V_{h(limit)}$	$V_{h(95\%)}$
2	0.70	0.73	0.10%	0.05%	2	0.70	0.26	0.10%	0.05%
3	0.47	1.78	0.10%	0.23%	3	0.47	1.31	0.10%	0.22%
4	0.44	0.23	0.10%	0.00%	4	0.44	-0.23	0.10%	0.00%
5	0.61	2.93	0.22%	0.88%	5	0.61	2.45	0.22%	0.86%
6	0.44	0.01	0.10%	0.00%	6	0.44	-0.46	0.10%	0.00%
7	0.44	2.77	0.22%	0.49%	7	0.44	2.30	0.22%	0.48%
8	0.44	0.04	0.10%	0.00%	8	0.44	-0.42	0.10%	0.00%
9	0.44	0.18	0.22%	0.06%	9	0.44	-0.29	0.22%	0.05%
10	0.44	0.00	0.10%	0.00%	10	0.44	-0.47	0.10%	0.00%
11	0.46	0.61	0.36%	0.19%	11	0.46	0.14	0.36%	0.18%
12	0.44	0.00	0.10%	0.00%	12	0.44	-0.47	0.10%	0.00%
13	0.44	0.47	0.36%	0.29%	13	0.44	0.00	0.36%	0.28%
14	0.44	0.00	0.10%	0.00%	14	0.44	-0.47	0.10%	0.00%
15	0.44	0.00	0.10%	0.00%	15	0.44	-0.47	0.10%	0.00%
16	0.44	0.00	0.10%	0.00%	16	0.44	-0.47	0.10%	0.00%
17	0.44	0.23	0.24%	0.14%	17	0.44	-0.23	0.24%	0.14%
18	0.44	0.00	0.10%	0.00%	18	0.44	-0.47	0.10%	0.00%
19	0.44	0.16	0.24%	0.20%	19	0.44	-0.30	0.24%	0.20%
20	0.44	0.00	0.10%	0.00%	20	0.44	-0.47	0.10%	0.00%

So, we cannot assess compliance to harmonic emission?

- It is possible, sort of, yes, IF:
- You use an instrument, certified to IEC 61000-4-30, Class A + Edition 4 (or 3) BUT for both V&I
- That instrument at least a 16-bit A/D
- Realistic harmonic limits: apportioning (mathematics) to calculate limits > spreadsheet - pragmatic
- And, if you know what method to apply
- To identify those current harmonics that increase the network (background) voltage harmonic
- And, < harm no 17
- Then, sort of possible......
- Yes, because: Results(t) The Truth is NOT Social

